Introduction

In September 2017, a startup company known as Bird dispatched hundreds of dockless electric scooters on the streets of Santa Monica, California. The small, motorized vehicles were equipped with GPS technology and customized to be located and unlocked via a smartphone application. The scooters were rentable for a flat fee, with an additional charge for each minute of usage, and could be left unattended at the rider’s destination, ready to be activated by the next user.

Two years later, Bird operates fleets of electric scooters in dozens of cities across the United States, with an estimated valuation greater than $2 billion. The company’s rapid ascent is a testament to the growing popularity of shared electric scooters for short-distance travel, primarily in cities and other population centers. Bird is only one of several related companies that have launched in recent years, sharing the market with Lime, Skip, Spin, Jump and Lyft.

According to the National Association of City Transportation Officials (NACTO), more than 85,000 electric scooters were available for use across the country at the end of 2018, resulting in nearly 40 million trips. The emergence of shared electric scooters is the latest development in the broader micromobility movement, defined by the use of light, often single-occupant modes of transportation for short distances. Along with electric scooters, station-based and dockless pedal and electric bicycles are the most commonly used micromobility vehicles, accounting for more than 80 million trips in 2018.

The affordability and accessibility of micromobility vehicles give them the potential to mitigate the most pressing transportation and infrastructure issues facing cities and suburbs, including increased congestion, high emissions and poor air quality, and inequitable access to convenient transit options. However, the proliferation of electric scooter usage on U.S. streets during the past two years has precipitated several transportation and public safety problems for state and local government officials. In many cases, officials have been forced into reactive positions, developing regulations after scooters already have been widely adopted within their jurisdictions. Some cities have embraced this new form of mobility, while others have enacted strict regulations or outright bans due to the various risks it poses for riders and pedestrians.

In the South, the introduction of shared electric scooters has been swift. With growing populations and favorable climates across much of the region, urban and suburban areas in most SLC states are experiencing both the benefits of electric scooters for expanded mobility and the challenges they present for transportation and public safety. In response, several SLC states enacted legislation in 2019.

1 All references to electric scooters in this SLC Regional Resource refer to dockless scooters, which do not require docking stations for storage or charging.
to address the concerns that shared electric scooters have engendered, such as how and where they should operate, who is eligible to ride them and what precautions need to be taken to maximize safety.

This SLC Regional Resource provides an overview of micromobility, specifically shared electric scooters, and outlines the various actions Southern states have taken to create a coherent regulatory framework to manage their growth. While much of the authority to regulate electric scooters is delegated to local officials, state governments have an important role to play to ensure this emerging mode of transportation is both safe and accessible.

Shared Micromobility

Micromobility is not a new concept in transportation, with origins dating back to the invention of the bicycle in the 19th century. However, the phenomenon of shared micromobility emerged in the past decade due to the near-universal adoption of smartphones, advances in GPS technology, peer-to-peer connectivity, mobile payment systems and improved battery technology. These developments have led to the prolific growth of shared micromobility vehicles across urban and suburban landscapes, both nationally and globally, offering a popular, accessible and affordable means of transportation. According to NACTO, annual trips on shared micromobility vehicles increased from 321,000 in 2010 to 84 million in 2018 (see Figure 1).

Today, micromobility generally includes several transportation options, most notably docked and dockless pedal bicycles, electric bicycles and electric scooters. Though each is distinct, they share commonalities that connect them to the current micromobility movement. According to the National League of Cities—a Washington, D.C.-based advocacy organization working on behalf of U.S. cities, towns and villages—there are three key features among today’s micromobility vehicles:

Figure 1 Shared Micromobility Trips 2010-2018

1. Increased flexibility and access via connected devices, allowing them to be located and activated with a smartphone or other GPS-enabled device;
2. Small-scale adoption intended for individual ridership; and
3. Shared usage via docking stations or smartphone applications which allow dockless pickup and drop-off.

The flexibility and accessibility afforded by shared micromobility vehicles allow them to occupy a unique space within existing transit and mobility systems, representing an alternative to motor vehicle trips for short-distance travel. According to the National Household Travel Survey from the U.S. Department of Transportation’s Federal Highway Administration, nearly 60 percent of all vehicle trips nationally in 2017 were less than six miles and more than one-third were under three miles (see Table 1). Proponents of micromobility argue that many of these short-segment trips can be replaced by shared micromobility vehicles, thereby reducing congestion in population centers, improving air quality and offering riders an economical alternative to automobiles.

Micromobility services also have the potential to augment existing public transit systems by facilitating better access to public transportation options. Many communities, even those in and around core urban centers, are designated as “mobility deserts” due to the presence of first- and last-mile transit gaps—the beginning and end of individual trips that are not met by existing transit options (see Figure 2). In many cases, the closest transit stop may not be within a feasible walking distance* from the point of departure or arrival, diminishing the overall utility of public transportation. Unlike buses and trains, the distance an individual is willing to walk to reach the nearest transit stop varies depending on the circumstances, including existing pedestrian infrastructure, weather conditions and physical abilities of the individual. According to the Federal Highway Administration, most people generally are willing to walk for five to 10 minutes—approximately a quarter of a mile to half a mile—to reach a transit stop, and potentially longer to access heavy rail.

Table 1: Average Motor Vehicle Trip Distance in Miles 2017

<table>
<thead>
<tr>
<th>Trip distance</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 0.5 mile</td>
<td>5.0</td>
</tr>
<tr>
<td>1 mile</td>
<td>16.4</td>
</tr>
<tr>
<td>2 miles</td>
<td>13.8</td>
</tr>
<tr>
<td>3 miles</td>
<td>10.4</td>
</tr>
<tr>
<td>4 miles</td>
<td>7.9</td>
</tr>
<tr>
<td>5 miles</td>
<td>6.0</td>
</tr>
<tr>
<td>6-10 miles</td>
<td>17.3</td>
</tr>
</tbody>
</table>

Source: 2017 National Household Travel Survey, Federal Highway Administration

Figure 2: First- and Last-Mile Transit Gaps

Source: "First and Last Mile Strategic Plan," Regional Transportation District, Denver, Colorado
micromobility vehicles do not operate along fixed-route networks and have the flexibility to be located near the communities that experience first-mile/last-mile dilemmas. Riders can easily access the vehicles to transport them to the closest transit stop. This can be particularly beneficial for underserved and low-income communities, which are more likely to be affected by first-mile/last-mile gaps.\(^9\)

One optimistic forecast suggested that as many as 1.4 trillion miles of existing annual travel nationally could be replaced by micromobility services.\(^10\) While this may be an unrealistic target, there are indications to suggest that micromobility vehicles potentially could replace a significant share of short-segment travel. McKinsey and Company, a New York-based consulting firm, estimates that 8 percent to 15 percent of all trips shorter than five miles will be replaced by micromobility vehicles in the future.\(^11\) Adoption rates will vary depending on weather conditions, demographics of riders, geographical orientation and the extent of regulations.

Electric Scooters

Although micromobility includes several different modes of transportation, shared electric scooters have become the fastest growing and least regulated micromobility vehicle since their introduction two years ago. In 2018, shared electric scooters overtook bicycles as the preferred vehicle for dockless vendors, only a year after they became widely available, due to quick adoption in cities, suburbs and other population centers, such as college towns.\(^12\) Shared bicycles, including electric and pedal docked and dockless bicycles, still account for a greater percentage of trips than dockless electric scooters, but the margin is narrowing. Electric scooters accounted for 42.5 percent of the 84 million trips taken on shared micromobility vehicles in 2018 (see Figure 3).

The prolific growth of electric scooters highlights their popularity and utility. Generally capable of traveling at speeds between 15 and 20 miles per hour, electric scooters allow riders to move short distances at a minimal cost, generally $1 to activate the vehicle and $.15 for each minute of use. Prospective riders locate a nearby scooter with a smartphone application, pay for it digitally and then travel to their destination, at which point the scooter is locked until the next rider reactivates it. The price points are significantly lower than taxis and ride-sharing services. Meanwhile, the dockless nature of scooters makes them a more flexible travel option than buses and trains—though not always more affordable—for short distances.\(^13\)

Data indicates that peak electric scooter usage is around midday and continues into the early evening, with the highest rates documented during weekends. This suggests that, currently, they are used primarily for social and recreational activities, rather than commuting to/from work during the week.\(^14\)

\(^*\) Electric scooter rates vary depending on location. Several U.S. cities now have surpassed the $.15/minute usage rate.

Figure 3 Shared Micromobility Rides 2018

<table>
<thead>
<tr>
<th>Cargo share trips:</th>
<th>38.5 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dockless bike share trips:</td>
<td>9 M</td>
</tr>
<tr>
<td>E-bike trips (station-based & dockless):</td>
<td>6.5 M</td>
</tr>
<tr>
<td>Station-based bike share trips:</td>
<td>36.5 M</td>
</tr>
</tbody>
</table>

Source: “Shared Micromobility in the U.S.: 2018,” National Association of City Transportation Officials
Populus, a San Francisco-based company that collects data from shared mobility operators for cities and other stakeholders, found that public perceptions of electric scooters are mostly positive. Based on a survey of 7,000 people in major U.S. cities, approximately 70 percent viewed scooters in a positive light. In Atlanta and Austin, two Southern cities with large electric scooter fleets, 79 percent and 76 percent of respondents, respectively, viewed electric scooters favorably between May and July of 2018.

However, electric scooters have caused varying problems for state and local authorities and the public. In many cases, electric scooter operators have entered markets with ambiguous regulatory frameworks, leading to confusion among riders, heightening public safety concerns and accentuating existing infrastructure limitations. As a result, the benefits and convenience of electric scooters often have been overshadowed by the problems they have caused.

Regulatory Ambiguity

Regulations governing electric scooters vary considerably by city and state, often leading to uncertainties for riders, pedestrians and drivers. From restrictions on roads and sidewalks to helmet requirements, it can be difficult to know local and statewide regulations for scooter usage. In some cities, scooters are treated as “personal mobility vehicles,” not subject to standard helmet or inspection requirements; in others, scooters are placed in the same classification as mopeds, with all the accompanying rights and responsibilities. In cities where helmets are required to operate a scooter, riders are expected to bring their own, as scooters are not equipped with them.

These uncertainties can lead to potentially dangerous habits that pose risks for both riders and pedestrians. According to a June 2019 survey by Consumer Reports, 27 percent of electric scooter riders are not certain which traffic laws they are required to follow. The report also noted that more than half ride on sidewalks, even though it is banned to do so in many areas; 26 percent ride in bike lanes; and 18 percent ride on streets but not in designated bike lanes. Authorities caught unaware by the influx of scooters are enacting measures and implementing restrictions to improve public safety, but it has been difficult to do so in areas where scooters already are widespread.

Public Safety

In April 2019, the Centers for Disease Control and Prevention (CDC) and the Public Health Department of Austin, Texas, released a study documenting electric scooter-related injuries in the city from September to November 2018. The study followed reports from local doctors and emergency personnel indicating an elevated number of injuries in local medical facilities associated with electric scooter usage. During the three-month study period, the researchers found 20 individuals injured per 100,000 electric scooter trips, with nearly half of riders sustaining head injuries. Moreover, almost half of injured riders reported severe injuries, including bone fractures; nerve, tendon or ligament injuries; extended stays in hospitals; severe bleeding; and sustained organ damage. Fifteen percent of riders had evidence suggestive of traumatic brain injuries.

Additionally, a February 2019 investigation by Consumer Reports estimated that 1,500 people nationally have been injured in electric scooter-related accidents since late 2017, while a study from the University of California in Los Angeles (UCLA) identified 249 scooter-related visits at two Los Angeles-area emergency departments from September 2017 to August 2018. These studies, and others, reflect a growing consensus among authorities, the medical
community and public safety experts that increased
electric scooter usage poses risks for both riders and
pedestrians if they are not appropriately regulated.
However, the overall number of deaths resulting from
electric scooter trips remains low, especially compared
to the number of people injured or killed in motor
vehicle accidents each year. According to Consumer
Reports, eight scooter-related fatalities were document-
ed in the United States as of June 2019.21

The majority of riders do not wear helmets while
operating an electric scooter, despite scooter opera-
tors recommending helmets in their terms of service.
The CDC/Austin study found that less than 1 per-
cent of injured riders were wearing a helmet; in the
UCLA study, less than 5 percent of those injured
wore helmets. Electric scooter operators encourage
riders to wear helmets as a precaution and, in some
cases, will send free helmets upon request. In most
localities, helmets are voluntary, suggesting that riders
will continue to remain susceptible to scooter-related
head injuries.

Infrastructure Limitations
Perhaps one of the most notable attributes of shared
electric scooters—that they are dockless and capable
of being activated anywhere—also garners the most
complaints from the public and local officials. It
has been difficult for officials in many cities to keep
parked scooters off areas where they pose a risk or
public nuisance, such as heavily trafficked sidewalks,
next to crosswalks or in front of businesses and res-
idences. Obstruction of public rights of way can be
dangerous for individuals with mobility and sight
limitations, occasionally leading to lawsuits against
both electric scooter operators and the cities in which
they operate.22 Electric scooter operators encourage
riders to park the vehicles responsibly, even requiring
a photo to be taken upon arrival at a destination,
while independent contractors who charge the scoot-
ers are required to drop them off at specific locations
designated by scooter operators.

In most areas, roads and sidewalks were not de-
signed to accommodate widespread electric scooter
usage. Like bicycles, scooters generally are banned
from operating on sidewalks. However, the streets to
which riders are confined often are insufficiently safe,
prompting them to ride on sidewalks, in violation of
the law, or in potentially dangerous situations along-
side traffic. Riding at night can be especially dan-
gerous. In Atlanta, where four electric scooter-related
deaths have occurred in 2019, the city announced
a ban on operating the vehicles at night until safer,
dedicated areas for scooter traffic can be identified.23

Access
Despite the potential of broader access, electric scoot-
ers are not always easily accessible for everyone. The
vehicles often are clustered in densely populated,
affluent neighborhoods, bypassing those in under-
served communities.24 In response, a number of
proposals have been considered or implemented
to encourage more equitable expansion, including
waiving caps on the number of scooters allowed in
underserved communities; requiring discounts for
low-income riders; cash payment options, as opposed
to credit cards; and unlocking scooters using a text
message instead of scanning a code, which requires
a smartphone.25

However, data from Populus indicates that public
perceptions of scooters are most favorable among
those with incomes less than $50,000. Specifically,
72 percent of individuals with incomes under
$25,000, and 75 percent with incomes between
$25,000-$50,000, viewed scooters favorably. By com-
parison, favorable perceptions fell to 69 percent for
incomes between $50,000-$100,000, 66 percent for
$100,000-$200,000, and 64 percent for $200,000
and greater.26

Micromobility and Electric Scooter
Legislation in the South
Due to mostly mild year-round weather conditions
and growing population centers, cities in many
Southern states have been popular locations for
electric scooter operators. According to NACTO,
at the end of 2018, electric scooters had been intro-
duced in cities throughout 11 of the 15 states in the
SLC region, a noticeably large share relative to other
areas of the country (see Figure 4). Inclement weather
conditions that are more common in areas outside the South, such as extreme cold and frequent snowfall, can place limitations on electric scooter adoption, resulting in strong seasonal demand for the vehicles. At the beginning of 2019, more than 40 bills pertaining to electric scooters were introduced in 26 states, including many in the SLC region. In the South, Alabama, Arkansas, Florida, Kentucky, Louisiana, Tennessee and Virginia successfully passed legislation during their 2019 legislative sessions. Other states, including Georgia, North Carolina and Texas, introduced bills, but were unable to pass them through both chambers. The introduced and enacted legislation primarily focuses on four aspects of electric scooter usage and adoption:

1. Codifying the definition of electric scooters and, in some cases, micromobility devices, services and operators;
2. Establishing parameters on electric scooter usage, including parking restrictions, minimum age requirements, safety equipment (e.g., headlamps and rear lights between sunset and sunrise), and licensure and registration;
3. Aligning electric scooter regulations with rules and standards for bicycles rather than motor vehicles; and
4. Delineating the role of local governments in establishing standards, rules and regulations for electric scooters within their jurisdictions.

Although several states have different statutory names for electric scooters*, the vehicles are defined in all pieces of legislation as devices that weigh less than 100 pounds and do not exceed speeds of 20 miles per hour on level surfaces. In addition, several states refer to electric scooters as “motorized” devices, distinct from motor vehicles that do not meet the specified size and speed thresholds. A review of legislation that was signed into law in SLC member states in 2019 follows.

Alabama

Senate Bill 312 defines “shared micromobility device” and “shared micromobility device system” as modes of transportation, including electric scooters, that provide docked or dockless devices to users

*Statutory names for the devices include scooter, electric motorized scooter, electric low-speed scooter and motorized scooter.

Figure 4 Electric Scooter Fleets (as of December 31, 2018)

for short-term rentals. According to the legislation, shared micromobility devices cannot be deployed on public highways or bikeways of the state without authorization from the applicable county or municipal authority. Counties and municipalities also retain the right to regulate the operation of all shared micromobility devices, with the authority to establish minimum insurance requirements, age restrictions, safety standards and any other provisions deemed necessary.

In jurisdictions where they are permitted to operate, riders of shared micromobility devices are granted all the rights given to bicyclists. Micromobility devices are not considered motor vehicles and, therefore, not subject to provisions related to personal insurance, licensing and registration. Additionally, micromobility devices cannot be parked on a sidewalk in a manner that impedes the reasonable movement of traffic or pedestrians.

The legislation also stipulates that operators of shared micromobility devices systems must have commercial liability policies with minimum limits of $1 million per occurrence, insuring against injuries, death and property damage. Alabama is one of only two states in the South to include minimum commercial insurance requirements for operators.

Arkansas

House Bill 1619 defines “scooter-share operator,” “scooter-share program” and “shared scooter” as entities, services and devices that facilitate for-hire scooter transportation. According to the legislation, local authorities may establish reasonable standards, rules and regulations for the safe operation of electric scooters on public property. The devices cannot be ridden by those under 16 years old.

Notably, local authorities can require scooter-share operators to provide fleet and ride activity data for all trips beginning or ending within their jurisdictions, as well as all ride activity resulting in accidents. The legislation establishes guidelines to ensure individual privacy is protected when data is transferred. Arkansas is the only state in the South that allows local authorities to require operators to provide comprehensive data regarding their vehicles’ activity.

The legislation also stipulates that scooter-share operators must carry commercial insurance coverage dedicated exclusively for the operation of shared scooters, with a limit of at least $1 million for each occurrence and $5 million in the aggregate. Operators also must carry excess liability coverage with a limit of at least $5 million, as well as workers’ compensation coverage as required by law. Arkansas is one of only two states in the South to require minimum commercial insurance requirements for operators.

Florida

House Bill 453 defines “micromobility vehicle” as any motorized transportation device available for private use by reservation through an online application, website or software for “point-to-point” trips. According to the bill, local authorities retain the right to adopt ordinances governing the operation of micromobility devices on streets, highways, sidewalks and “sidewalk areas” within their jurisdictions.

Riders of shared micromobility devices also are granted all the rights given to bicyclists. Micromobility devices are not considered motor vehicles and, therefore, not subject to provisions related to personal insurance, licensing and registration. The legislation states that a rider may not drive any vehicle, other than by human power, upon a bicycle path, sidewalk or sidewalk area, implying that motorized scooters must be operated on streets.

The measure also establishes that micromobility device operators are responsible for securing all devices located in any part of the state during extreme weather events. This includes active tropical storm or hurricane warnings issued by the National Weather Service.

Kentucky

House Bill 258 allows riders over age 16 to operate electric scooters on a highway, bicycle lane or bicycle path. According to the legislation, riders and operators of electric scooters must comply with all
local government ordinances, and the Kentucky Transportation Cabinet must promulgate administrative regulations establishing safe operating standards for electric scooters.

The measure also states that electric scooters must be equipped with at least one headlamp and one rear tail light if operated at night, defined as a half-hour after sunset and a half-hour before sunrise, as well as any other time when visibility is low. Electric scooters can be parked on sidewalks if they do not impede the reasonable flow of traffic or pedestrians.32

Louisiana

Senate Bill 91 states that electric scooters may be operated on sidewalks, bicycle paths and highways unless it is prohibited by local authorities within their jurisdictions. According to the legislation, parishes and municipal governing authorities retain the right to issue reasonable regulations and assess penalties for moving and parking violations resulting from inappropriate use of electric scooters.

The measure also states that electric scooters must be equipped with appropriate lights, reflectors or reflective marking if operated at night, defined as anytime between sunset and sunrise, as well as any other time when visibility is low. Riders under the age of 17 also are required to wear helmets while operating an electric scooter.33

Tennessee

Senate Bill 1107 gives counties, municipalities and metropolitan governments the authority to establish ordinances for regulating, controlling or banning the use and operation of electric scooters within their jurisdictions, as long as the ordinances are reasonably related to promoting and protecting the health, safety and welfare of the community. For the purposes of driving under the influence, riders of electric scooters are subject to the same provisions as motor vehicle drivers.34

Virginia

House Bill 2752 allows any county, city, town or political subdivision to establish demonstration projects or pilot programs regulating the operation of electric scooters, as long as the projects or programs are consistent with state law. Anybody over the age of 14 is permitted to ride an electric scooter; those under 14 are permitted to do so if they are accompanied by a guardian who is at least 18 years of age.

The bill also states that riders of electric scooters are subject to the same rights as pedestrians when riding...
on a sidewalk or crossing a roadway on a crosswalk. Electric scooters are permitted to be operated on sidewalks unless prohibited by a local ordinance. However, electric scooters can be parked on sidewalks only if they do not impede the regular flow of traffic or pedestrians and not prohibited by official traffic controls.

Electric scooters must be equipped with a headlight and a red reflector when operating anytime between sunset and sunrise. The lights and reflectors must be visible from 500 feet and 600 feet, respectively.35

Conclusion

In a January 2019 report, McKinsey and Company forecasted a shared micromobility market potential between $200 billion to $300 billion in the United States by 2030.36 Shared electric scooters have an especially promising future for expanded mobility in cities, suburbs and other population clusters, given their prolific growth during the past two years. Their affordability and accessibility, along with the potential to mitigate first-mile/last-mile public transit gaps, give them a unique and complementary role to play within transportation systems.

Electric scooters and other micromobility solutions, regardless of their proliferation, are not viable forms of transportation for all population groups, including those with injuries, chronic disabilities, sight and mobility issues, and families that require more than single-occupant vehicles for travel. As a result, micromobility should be viewed only as a single component of transit infrastructure, capable of providing short-distance travel for those with the interest and ability to utilize such vehicles.

State and local governments have a role in maximizing the utility of these emerging modes of transportation for all communities and ensuring they remain safe for riders, pedestrians and drivers. Policies that facilitate the placement of electric scooters in underserved communities can play a beneficial role in expanding multi-modal transportation and increasing access to public transit. Collecting data from electric scooter operators can ensure local authorities have sufficient information to understand how scooters are utilized and where they should be placed to maximize access. Meanwhile, state governments can enact legislation that promotes better public safety, ensures standardization across communities and gives local authorities appropriate autonomy to create policies that best fit the circumstances within their jurisdictions.

The sudden proliferation of electric scooters, and the ongoing popularity of micromobility as a means of transportation, is an important reminder that states and localities must have the flexibility and vision to appropriately regulate emerging mobility platforms, while ensuring they do not stifle entrepreneurship and innovation that can benefit both consumers and transportation systems. New mobility systems and vehicle designs will emerge in the future, just as shared electric scooters have during the past two years. Proactively responding to such innovations will give officials an opportunity to strike the right balance between ensuring public safety and incentivizing expanded mobility.
Endnotes

4. Ibid.

This report was prepared by Roger Moore, policy analyst and committee liaison of the Economic Development, Transportation & Cultural Affairs Committee of the Southern Legislative Conference, chaired by Representative Manly Barton of Mississippi. This report reflects the policy research made available to appointed and elected state officials by the Southern Office of The Council of State Governments (CSG).

Opened in 1959 as the final regional office of CSG, the mission of the Southern Office is to promote and strengthen intergovernmental cooperation among its 15-member states, predominantly through the programs and services provided by its Southern Legislative Conference (SLC). Legislative leadership, members and staff depend on the SLC to identify and analyze solutions for the most prevalent and unique state government policy issues facing Southern states. Member outreach in state capitols, leadership development and staff exchange programs, meetings, domestic and international delegation study tours, and policy fly-ins by the Southern Office support state policymakers and legislative staff in their work to build a stronger region.

Established in 1947, the SLC is a member-driven organization and serves as the premier public policy forum for Southern state legislatures. The SLC Annual Meeting and a broad array of similarly well-established and successful SLC programs—focusing on both existing and emerging state government innovations and solutions—provide policymakers diverse opportunities to interact with policy experts and share their knowledge with colleagues.