TRANSACTIONAL ENERGY

Wednesday, Dec. 3 | 2–3 p.m. EST

CSG eCademy
A Day in the Life of a Transactive Grid

GridWise® Architecture Council
Presented to:
Council of State Governments Webinar
December 3, 2014
Mark Knight and Tom Sloan – GWAC Members
Ron Melton – GWAC Administrator
Trends for the grid of the future

- Increased penetration of DER, especially in distribution systems
- Increased variability – due to increased renewable resource integration
- Load growth low or declining
- Potential for peak load growing
- Increasingly “intelligent” devices – loads and in the electricity network
Trend impacts

• Move from central power station, load following operation to a coordinated multi-resource, supply following operation

• Changes in load patterns, e.g., the California “duck” curve with much different net load shape

• Need to effectively engage all resources and loads to maintain or improve system reliability and efficiency
Transactive Systems

• One approach for engaging the diverse set of active parts

• How would this work from view of
 – Regional system operator?
 – Distribution system operator?
 – End-user?
Our TE grid scenario

– TE deployed in a distribution system

– RTO offers markets for energy & services:
 • Day-ahead
 • Hourly
 • Spot markets

– All parties involved engage in planning of:
 • Load activity
 • Prices
 • Etc.

– A simple network topology
Our network topology

- Wind (5¢ / kWh)
- Fossil (20¢ / kWh)
- Nuclear (10¢ / kWh)

Transmission System (TS)

Distribution Systems
- DS 1
- DS 2
- DS 3

- Residential 1
- Residential 2
- Commercial & Industrial
Our story begins at 6 PM

We plan the day ahead

– Weather forecast
 • A moderate spring day is expected
 • Not unusually warm
 • Moderate winds overnight

– Power forecast
 • Wind power available
 • Low consumption expected
 • Low overnight electricity price

– No transmission or distribution constraints expected
Price and Load Forecasts

Price Forecast

Load Forecast
A revised weather forecast

– New weather forecast
 • Hotter than previously forecast
 • Unseasonably warm

– Loads and prices respond
 • More afternoon load than previously expected
 • Prices forecast to rise in response

– Loads and price adjust
 • Buildings moderate power consumption
 - Pre-cool from mid-morning through mid-day
 - Flatten load in late afternoon, early evening
 • Prices moderate – still higher than forecast
Updated Price & Load Forecasts

Price responds to load forecast

Load responds to adjusted price forecast
Wind forecast update

– Winds stronger than forecast until 7 AM
– Price drops to encourage use of excess wind power
– Loads adjust and new load forecast provided
– No need to adjust wholesale prices
– Distribution feeder constraint
 • Causing local distribution price differences
 • Iteration of load & price to resolve constraint
Updated Price & Load Forecasts

1. Updated Price & Load Forecasts

2. DS2 - local price adjustment

3. DS loads respond to manage local problem

4. TS - P ($/kWh)

5. DS1 - P ($/kWh)

6. DS2 - P ($/kWh)

7. DS3 - P ($/kWh)

8. TS - Q (kWh)

9. DS1 - Q (kWh)

10. DS2 - Q (kWh)

11. DS3 - Q (kWh)
Real time constraint

- Temperature increases
 - Loads increase
 - Unexpected transmission constraint

- Prices changes
 - Price at constrained node (LMP) increases
 - Prices downstream rise now and later

- Loads changes on affected feeders
 - Load curtailment
 - Load shifting

LMP = Local Marginal Price
Updated Price & Load Forecasts

Unexpected transmission constraint - prices jump

Loads respond to transmission constraint
Key points from the “simulation”

– Exchange of information between systems
 • Systems: bulk power, distribution, and end-uses
 • Critical to engaging all elements of the system

– Price changes based on:
 • Time
 • Location
 • Grid conditions

– Price changes must be transparent to all

– Various mechanisms for price-response actions

– Forecasts of price and load are useful at all levels
Key points: End-user view

– End-user response is useful if:
 • Based on “actionable information” such as price forecast
 • Magnitude of price change → Magnitude of response

– End-users should:
 • Provide more information than available now
 • Provide information about planned consumption

– Responses will vary across categories of end-user
Key points: Distribution view

– Distribution system coordinates:
 • Response of end-users
 • “Needs” of the bulk power system

– Roles of distribution system
 • Moderate responses
 • Maintain distribution reliability

– Distribution compared to transmission
 • Distribution system is more dynamic
 • Flexible approaches are required
Key points: Regional operator view

– Regional operations manage:
 • Financial risk
 • Reliability risk

– Reduce risks with better information about:
 • Present loads
 • Future load behavior

– Reducing risk reduces costs to all stakeholders
For more information:

• GridWise® Architecture Council
• www.gridwiseac.org
• GridWise Architecture Council Administrator:
 – Dr. Ron Melton
 – 509-372-6777
 – ron.melton@pnnl.gov

• Acknowledgement: Material in this presentation was created by David Forfia, David Holmberg and Ron Melton
Questions?

Please submit them in the question box of the GoToWebinar taskbar.
Thank you for joining us!